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Analysis of the SHG effects
for characterizing ultrashort pulses with SPIDER
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The analyses of second harmonic generation (SHG) effects have been firstly conducted for characterizing
ultrashort pulse with the spectral phase interferometry for direct electrical reconstruction (SPIDER). The
results show that we should multiply a modulation function for the recorded interferometric intensity in
order to avoid the effect of bandwidth of the pulses, thus we can exactly reconstruct the fundamental-
pulse intensity. The root-mean-square (RMS) phase error generated by bandwidth is proportional to the
nonlinear-crystal length, the intersection angle of the beams. We can also obtain greater phase-matching
acceptance angle in type II phase-matching crystal.

OCIS codes: 320.7160, 320.7100, 190.4360.

Over the last two decades, remarkable progress has been
achieved in short-pulse generation directly from lasers,
the shortest pulse is less than 5 fs, even as short as
single-cycle pulse regime[1]. Meantime, convenient and
exact measurement technology should be developed for
the generation and application of ultrashort pulse. Spec-
tral phase interferometry for direct electrical reconstruc-
tion (SPIDER) uniquely combines several advantageous
elements found in pulse measurement devices. SPIDER
requires no moving parts and uses a direct, noniterative
retrieval algorithm that produces an unambiguous phase
and intensity profile for the measured pulse. In addition,
SPIDER has been shown to be accurate[2], fast and ca-
pable of measuring pulses generated from oscillation or
chirped pulses[3,4].

Since SPIDER was invented in 1998, several studies
has addressed the performance of SPIDER. SPIDER can
measure the pulse as short as 3.4 fs[5], but the phase
match is inaccurate . In this paper, we analyze the second
harmonic generation (SHG)[6] and its effects for charac-
terizing ultrashort pulses, and derive a detailed descrip-
tion of SHG SPIDER performance for ultrabroad-band
pulse with type II noncollinear phase matching.

Core of SPIDER’s theoretical underpinnings is spec-
tral shearing interferometry[7]. First, we assume that the
appropriate crystal thickness should mostly be adopted
from the phase-matching conditions. As it has been
pointed out[8], pulse broadening due to crystal bulk dis-
persion is negligibly small compared to the group-velocity
mismatch for theory of SHG in a nonlinear crystal. We
assume that the second harmonic (SH) field is not ab-
sorbed in the nonlinear crystal. This is well justified for
any pulse. Absorption bands of the crystals are trans-
parent in the visible start at 200 nm for Gaussian pulse.
Consequently, at these frequencies the field amplitude de-
creases by a factor exp(−π2/2 ln 2) compared to its max-
imum at 400 nm. We also assume the efficiency of SHG
to be low enough to avoid depletion of the fundamental
beams.

We assume that wavefronts of the fundamental waves
inside the crystal are practically flat. Therefore, we treat
the SHG as a function of the longitudinal coordinate only
and include the transversal coordinates at the last step to
account for the spatial beam profile. In fact, we should

use a convex lens or concave mirror to avoid the beam
divergence, that is to say, pulses are measured with non-
collinear phase-matching model. The geometry is shown
in Fig. 1.

Now we can obtain the equation of wave propagation
in the nonmagnetic, loss-free and homogeneous medium
from Maxwell’s equations[9]

∂2Es(z, t)
∂z2

= μo
∂2D(z, t)

∂t2
+ μo

∂2P (2)(z, t)
∂t2

, (1)

where Es(z, t) is the SH field, P (2)(z, t) is nonlinear po-
larization. D(z, t) = εoε(t)Es(z, t), ε(t) is the relative
permittivity. In the frequency domain, an equivalent of
Eq. (1) is

∂2Ẽs(z, Ω)
∂z2

+ k2
s (Ω)Ẽs(z, Ω) = −μoΩ2P̃ (2)(z, Ω), (2)

where Ẽs(z, Ω) and P̃ (2)(z, Ω) are Fourier transforms of
Es(z, t) and P (2)(z, t), Ω is the SH frequency, and ks(Ω) is
the wavevector of the SH field, k2

s (Ω) = Ω2μoεoε̃(Ω) with
ε̃(Ω) being the Fourier transform of the relative permit-
tivity ε(t).

In order to simplify the Eq. (2), we write the SH field
as a plane wave propagating along the z axis:

Ẽs(z, Ω) = ε̃s(z, Ω) exp[iks(Ω)z]. (3)

Hence Eq. (2) becomes

∂2ε̃s(z, Ω)
∂z2

+ 2iks(Ω)
∂ε̃s(z, Ω)

∂z
=

−μoΩ2P̃ (2)(z, Ω) exp[−iks(Ω)z]. (4)

Now we should calculate the second-order polariza-
tion P̃ (2)(z, Ω) to obtain the SH field. We assume
that two fundamental waves cross in the xz plane at
a small angle 2α (see Fig. 1). The inclination with
the z axis of each beam inside the crystal is then
α(ω) = arcsin[sin αo/n(ω)] ≈ αo/n(ω). The delay for off-
axis components of the beam due to the geometry can be
expressed for a plane wave as: τ ≈ Ln(ω) tanα(ω)/2c ≈
Lαo/2c for the beam propagating in +α direction. The
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Fig. 1. Noncollinear phase matching for three wave interac-
tion.

electric fields in the frequency domain can be found via
Fourier transforms:

Ẽ1(ω) = ε̃(ω) exp[iω(Lαo/2c)],

Ẽ2(ωo) = ε̃(ωo) exp[iωo(−Lαo/2c)]. (5)

With SPIDER for characterizing ultrashort pulse, the
second-order dielectric polarization is induced at fre-
quency by a quasi-monochromatic fundamental pulse and
a ultrabroad-band pulse, the P̃ (2)(z, Ω) can be calculate
as

P̃ (2)(z, Ω) = εoχ̃
(2)(ω, ω, ωo)Ẽ1(ω)Ẽ2(ωo)

= εo exp(iΩLαo/2c)χ̃(2)(ω, ω, ωo)ε̃(ω)ε̃(ωo)
× exp{i[kz(ω)z + kz(ωo)z − ωoLαo/c]}, (6)

where χ̃(2)(ω, ω, ωo) is the nonlinear susceptibility.
Consequently, we apply the slow-varying amplitude
approximation[9], Eq. (4) can be readily solved by in-
tegration over the crystal length L. The electric of the
SH therefore becomes

ε̃s(L, Ω) =
iΩ2L

2k(Ω)c2
exp(iΩLαo/2c)χ̃(2)(ω, ω, ωo)

×ε̃(ω)ε̃(ωo) exp{i[Δk(ω, ωo)L/2 − ωoLαo/c]}
×sinc[Δk(ω, ωo)L/2], (7)

where Δk(ω, ωo) is the phase mismatch, which is given
for type II phase matching by

Δk(ω, ωo) = Ko cos(αono(ω)) + Ke cos(αone(ωo))
−Ke cos(β(ω, ωo))

≈ Ko(ω) + Ke(ωe) − Ke(Ω). (8)

So far, we have conducted the SH field generated by
nonlinear crystal for SPIDER. Due to one of the funda-
mental pulses is a quasi-monochromatic pulse, the group-
velocity mismatch between fundamental pulse and SH is
sharply decreased, and the SH field is much more simple
compared to the general SHG. The geometrical smearing
of the delay is studied by Taft et al.[10]. We can analyze
this issue analogously and ignore the effect of smearing.

In this section, our goal is to obtain the effects of several
parameters by SHG for SPIDER. First, we should make
some approximations in order to simplify Eq. (7). For a
classical harmonic-oscillator model[11], we estimate dis-
persion of the second-order susceptibility χ̃(2)(Ω, ω, ωo)
from the dispersion of the refractive index

χ̃(2)(Ω, ω, ωo) ∝ χ̃(1)(Ω)χ̃(1)(ω)χ̃(1)(ωo), (9)

where χ̃(1)(Ω) = n2(Ω) − 1, Eq. (7) becomes

ε̃s(Ω) ∝ F (Ω)ε̃(ω), (10)

where

F (Ω) =
iΩL

2ne(Ω)c
[n2

e(Ω) − 1][n2
o(ω) − 1][n2

e(ωo) − 1]

×ε̃(ωo)sinc[Δk(ω, ωo)L/2] exp(iΩLαo/2c)
× exp{i[Δk(ω, ωo)L/2 − ωoLαo/c]}ε̃(ωo). (11)

According to the theory of SPIDER, we should pay at-
tention to the ac portion of the interferogram

D(+ac)(ω) ∝ F 2(Ω)|ε̃(ω)ε̃(ω − ΔΩ)|
× exp{−i[Δφ + φω(ω) − φω(ω − ΔΩ)]}, (12)

where the spectral shear ΔΩ is

Δφ = [Δk(ω, ωo) − Δk(ω − ΔΩ, ωo + ΔΩ)
+ 2ΔΩαo/c]L/2. (13)

As shown in Eqs. (11) and (12), we can see that the
fundamental-pulse intensity is not proportional to the
intensity of SH. The relation between them is the fac-
tor F 2(Ω). We define F 2(Ω) as modulation function,
the graph of the function is shown in Fig. 2. While we
measure intensity of the fundamental pulse, one of the
delayed test pair should be converted with the stretched
pulse. So, the SH field should be multiply the factor
1/|F (Ω)|2 in order to obtain the exact fundamental-
pulse intensity. Also, we consider the sinc function, the
result is that SPIDER is insensitive to the phase mis-
match because of ultrabroad band. SPIDER is much
more accurate than other technique for characterizing
sub-10 fs optical pulse.

Fig. 2. Modulation function of SH field.

Fig. 3. Phase error for the nonlinear crystal length.
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The phase difference from the interferogram of SH will
add phase error that induced by noncollinear SHG. The
value of the additional phase can be estimated from
Eq. (13). The spectral shear is less than 1% of the band-
width, Eq. (13) can be simplified as

Δk(ω, ωo) − Δk(ω − ΔΩ, ωo) � ΔΩαo/c. (14)

Now we can analyze the effects generated by intersec-
tion angle of the beams and the nonlinear crystal length,
that is to say, we obtain the phase error due to the broad-
band of the input pulse. It is useful to use a root-mean-
square(RMS) error[12] to define the phase error. The
phase error depended on crystal length and intersection
angle as shown in Fig. 3, while the input pulse has a
duration of 20 fs and the value of the spectral shear is
2π × 0.9 THz. The result is that RMS error is propor-
tional to the nonlinear crystal length and the intersection
angle. The phase error and RMS error that we estimated
numerically correspond to the value that some papers
addressed[13,14]. We should adopt less intersection angle
and less length of the crystal from this conclusion in the
practical instrument.

As mentioned above, we had assumed that wavefronts
of the fundamental pulse was flat. In fact, the divergent
laser beams have finite angular spreads. According to
Fourier optics, an ideal flat wave can be regarded as com-
bination of lots of flat waves. We can analyze the phase
mismatch induced by beam divergence with type II phase
matching to calculate phase-matching acceptance angle.

The SH spectral intensity will decrease by a factor
sinc2[Δk(ω, ωo)L/2] due to beam divergence. Now, we
expand Δk into Taylor series around θm:

Δk =
ω sin 2θmΔθ

2c
{[nω

e (θm)]3[(nω
e )−2 − (nω

o )−2]

−2[n2ω
e (θm)]3[(n2ω

e )−2 − (n2ω
o )−2]}. (15)

where θm is the phase-matching angle. When Δk = π/L,
we gain that the value of the phase matching acceptance
angle is 1.5×10−2 rad for a pulse with wavelength at 800
nm and a 200-μm nonlinear crystal. The angle in type II
phase matching is much more greater than that in type I
phase matching, that is to say, the efficiency of frequency
doubling increases in SPIDER.

SPIDER is a powerful and accurate pulse diagnostic
technique that is ideally suited for the measurement of a

vast variety of pulses. In this paper, we have developed
the SHG theory and provided the modulation function for
the intensity of fundamental pulse. We have also success-
fully estimated the additional phase error derived from
crystal length and intersection angle and calculated the
phase-matching acceptance angle. The well-developed
theory makes it possible to design more accurate appa-
ratus.
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